Intergenerational Effects of Child-Related Tax Benefits in the US

Borja Petit CUNEF

CUNEF - Internal Seminar

September 16, 2020

Introduction

- · Very low fertility rates in developed countries
 - ° 1.2 in ESP & ITA, 1.4 in AUT, 1.7 in NOR, 1.8 in US, 1.9 in FRA & SWE
 - Increasing attention to pronatalist policies

Never et al (2017) show that EU activities related to fertility relevant family policies have increased over time

- Examples: paid parental leaves, subsidized childcare, tax benefits, transfers Björklund (2006), Erosa et al. (2010), González (2013), Bick (2016)
- · Tax benefits are very generous in the US
 - Average benefits of \$3,400 per family w/ children (Maag, 2013)
 - Poor families may save up to 70% on taxes from having 2 kids
 - Rich ones may save up to 16%

What I do

Quantify the impact of tax benefits on fertility and intergenerational mobility

GE life cycle model with overlapping generations and child-dependent taxes

- Heterogeneous households have children
- ° Parents invest on their children's human capital
- · Why to study effects on intergenerational mobility?
 - · Family Economics meets Macro: who have the children matters
 - CG parents have 19% fewer children and invest 12% and 30% more time and money on their kids
- Why to use a GE framework?
 - Today's children will be tomorrow's parents: intergenerational effects
 - Demographic structure has GE implications

What I find

• Tax benefits increase fertility by 16%...

... but they increase intergenerational persistence of education by 30%

- Mechanism:
 - · Tax benefits reduce the "price" of children, increasing fertility
 - More children increase the cost parental investments lowering human capital
 - Benefits are progressive: low income families are more affected
- Results decomposition: long-run effects are quantitatively important
- Can we foster fertility without damaging mobility? Education subsidies
 - ° Cheaper education breaks (to some extend) the quantity-quality trade-off
 - Regressive transfer: high-educated are more affected

Related Literature

• Macro models with quantity-quality:

Caucutt et al. (2002), Restuccia and Urrutia (2004), Córdoba et al. (2016), Daruich and Kozlowski (2016), Sommer (2016), Lee and Seshadri (2018), Daruich (2018) Contribution: policy & endogenous fertility, parental investments and transfers

• Fertility and Public Policy:

Milligan (2005), Björklund (2006), Baughman and Dickert-Conlin (2009), Azmat and González (2010), González (2013)

Contribution: macro framework (GE & intergenerational effects)

Erosa et al. (2010), Bick (2016)

Contribution: evaluation of tax benefits, parental investments

Today's talk

- 1. Model economy
- 2. Calibration
- 3. Policy evaluation
- 4. Conclusions

The Model

Main features

- · Life-cycle economy with overlapping generations of married households
 - Households are heterogeneous: age, education, labor productivity, assets
- Endogenous fertility and initial conditions
 - Children human capital accumulation: parental investments
 - Parental transfers when children move out
 - $^{\circ}$ College choice at independence \rightarrow depends on human capital
 - ° After college, random matching with marital sorting
- Government taxes income to finance some (exogenous) expenditures
 - Tax rate: t(y, n), where y is hh income and n is the number of children
 - Social security runs an independent budget and pays pensions
- · GE: Aggregate firm combines capital, low- and high-educated labor

Life-cycle structure

Adults – Preferences

- Standard LC problem: consumption, savings and labor supply of spouses
- Wage rates given by age, gender, education and productivity: $\omega(g, e, z, j)$
- Household utility: $U_m(c, I_m + \alpha_m t) + U_f(c, I_f + \alpha_f t) + U_k(n, q, b)$

• $U_g(c, l)$ is the utility from consumption and leisure:

$$U_g(c, l_g + \alpha_g t) = \frac{c^{1-\sigma}}{1-\sigma} - \kappa_g \frac{(l_g + \alpha_g t)^{1+\psi}}{1+\psi}$$

• $\alpha_g \in [0, 1]$ captures the fraction of *t* spent by gender-*g* parent

• $U_k(n, q, b)$ is the utility derived from children

Adults – Preferences

• $U_k(n, q, b)$ is the utility derived from children

- where b is the amount of transfer to independent children
- $^\circ~\eta_0$ is a fixed cost (example: quality of leisure) ightarrow % childless

Fertile ages

- Fertile households make a pregnancy choice: $k \in \{0, 1\}$
 - Fertility risk: pregnant females have a newborn ($n_0 = 1$) next period w.p. $p_0(j)$
 - Labor productivity loss from childbirth: z_f falls by $\delta_0 \in (0, 1)$
- Children stay at home until J_I:
 - Stochastic independence: $n_l = 1$ with probability $p_l(n, j)$
 - Parents make a transfer b to independent children

[▷] Dynamic Problem

Childhood

Children are born with an exogenous level of human capital q₀

▷ Age profile

• Children's human capital exhibits dynamic complementarities Cunha et al. (2010), del Boca et al. (2014), Attanasio et al. (2017)

$$q' = \left[\mu \bar{q}^{\theta} + (1-\mu)\mathcal{I}(n,m,t)^{\theta} \right]^{\frac{1}{\theta}}$$

where $\mathcal{I}(n, m, t)$ is the investment function

$$\mathcal{I}(n,m,t) = A_{\mathcal{I}}\left[\varsigma\left(\frac{m}{n^{\psi_1}}\right)^{\gamma} + (1-\varsigma)\left(\frac{t}{n^{\psi_2}}\right)^{\gamma}\right]^{\frac{1}{\gamma}}$$

m: money; *t*: time; $\psi_1 \in (0, 1)$; $\psi_2 \in (0, 1)$

Independence & college choice

$$E(g,q,a) = E_{\xi_E|q,a} \max \left\{ \underbrace{M(g,\overline{e},a)}_{\text{Effort cost}} - \underbrace{\xi_E(g,q)}_{\text{Effort cost}}, \underbrace{M(g,\underline{e},a)}_{\text{Effort cost}} \right\}$$

- Initial state given by (gender, human capital, assets) $\equiv (g, q, a)$.
 - g from random draw with p(male) = p(female) = 0.5
 - q from parental investments
 - o a from parental transfer
- Effort cost of college ξ_E , decreasing in human capital:

 $\ln \xi_E(g,q) \sim N(\mu_E(g,q),1), \text{ with } \mu_E(g,q) = \mu_E^g \exp(-\mu_E^q q) \ge 0$

• Then, meet spouse and begin adult life \rightarrow sorting: Prob $(e_m = e_f) = p_M$

Calibration

Data

Panel Study of Income Dynamics (PSID)

- Panel of US households. Use waves from 2001 to 2009 (biannual).
- Information on education, family structure, income.

Child Development Supplement (CDS)

- Supplementary study covering children aged 0 to 12 from 1997 PSID families.
- I use the 2002 and 2007 waves: children aged 5 to 18.
- ° Time diary and child's scores in three of the Woodcock Johnson Tests

Current Population Survey (CPS)

- Large cross-section of US households.
- ASEC Supplement for the years 2000 to 2010
- Information on tax liabilities and income.

Calibration

- · Measurement with CDS data: children's human capital & time investment
- Estimate directly from data:
 - Tax function: standard parametric function estimated with CPS data.
 - Income process: age profiles and labor productivity process from PSID.
 - Fertility risk as in Sommer (2016)
 - ° Children's independence: estimate transition probabilities from PSID.
- Set some parameters to standard values or from related papers.
- · Calibrate remaining parameters internally.
- Validation: non-targeted moments, and replication Spanish universal transfer policy (González, 2010)

Measurement

• Time investments:

- CDS data contains a detailed time diary: nature and duration of activity, whether parents participate, etc.
- I define *t* as the total time parents actively participate in child's activity.
- $^{\circ}$ Mothers spend 1h 6 min and fathers 30 min, + 1h 1m together.

• Children's human capital:

- ° CDS data contains children's scores in the Woodcock Johnson Tests.
- Standard measure of child's skills
 Daruich (2018), Lee and Seshadri (2018), Del Boca et al. (2014)
- Follow Del Boca et al. (2014): q = d/(1 d), where $d \in [0, 1]$ is the test score.
- Informative about college graduation: Corr(e, q) = 0.482

Children's human capital

Tax function

• Parametric tax function:

Heathcote, Storesletten, and Violante (2017)

$$t(y,n) = 1 - \lambda(n) \left(\frac{y}{\overline{y}}\right)^{-\tau(n)}$$

Table: Parameters of the tax function

Number of children	0	1	2	3
Level, λ Progressivity, $ au$	0.858 0.097	0.880 0.101	0.893 0.114	0.910
Obs. (1,000)	65.9	40.3	44.9	15.8

Note: standard errors are all less than 0.01. Tax rate computed as total tax liabilities before tax credits over total household income

Exogenous parameters

Para	meter	Description	Source
β	β 0.98 Discount factor (annual)		Standard value
σ_c	0.80	Curvature utility from consumption	Córdoba et al (2016)
ψ	0.50	Frisch elasticity of labor supply	Standard value
α_m	0.54	% time invested by fathers	CDS
α_f	0.82	% time invested by mothers	CDS
ψ_1	0.92	Economies of scale, money investments	Sommer (2016)
ψ_2	0.54	Economies of scale, time investments	Sommer (2016)
q_0	1.42	Initial level of human capital	25th percentile of q
δ_0	0.10	Child penalty	Kleven et al. (2018)
p _R	0.13	Replacement rate	50% labor supply, ages 62-65
<i>p</i> _M	0.75	Share of household with $e_m = e_f$	PSID

▷ Income profiles

▷ Fertility risk

> Children independence

> Aggregate Prod. Function

Calibrated parameters

- Calibrate 19 parameters using SMM.
 - Preference parameters.
 - · Human capital technology and investment function.
 - College effort cost.

Targets key moments:

- Fertility, child's human capital and time investments profiles by maternal education.
- Labor supply by gender.
- Dynamics of child's human capital.
- Share of college graduates and elasticity of education to human capital.

Calibrated Parameters

Preferences

Parar	neter	Description	Moment	Model	Data
κ_m	4.74	Disutility labor, males	Average labor supply, male	0.36	0.35
κ_{f}	4.32	Disutility labor, females	Average labor supply, female	0.24	0.23
η_n	1.05	Utility n, weight	Completed fertility, HS mother	2.41	2.52
σ_n	0.51	Utility n, slope	% of households with 2+ children	0.53	0.52
η_q	0.96	Utility q, weight	Average human capital, HS mother	2.75	2.67
σ_q	0.76	Utility q, slope	Differential q by maternal educ.	0.44	0.56
φ	0.16	Utility q, fam. size param.	Differential fertility by maternal educ.	-0.26	-0.23
η_b	0.40	Utility from b, weight	Rel. wealth at age J_I , HS mother	0.11	0.11
σ_b	0.51	Utility from b, slope	Rel. wealth at age J_l , CG mother	0.16	0.17
η_0^0	2.70	Fixed cost, HS mothers	% of childless HS mothers	0.08	0.08
η_0^1	2.80	Fixed cost, CG mothers	% of childless CG mothers	0.12	0.13

Calibrated Parameters

Human capital, Investment and College choice

Parar	neter	Description	Moment	Model	Data
Law	of motion	of human capital:			
μ	0.30	Share parameter, q	Slope: $\Delta q = \alpha + \beta q + u$	0.22	0.25
θ	-1.84	Elasticity parameter	Slope: $\Delta q = \alpha + \beta \ln(y) + u$	0.18	0.14
Inves	tment fun	ction:			
$A_{\mathcal{I}}$	6.31	Productivity of investments	Average growth rate of q	0.22	0.25
ς	0.58	Share parameter, m	Time investment, HS mothers	0.23	0.25
γ	-0.31	Elasticity parameter	Time investment, CG mothers	0.25	0.28
Colle	ge choice	<u>:</u>			
μ_F^f	0.96	Fixed effort cost, females	Share of high educated females	0.27	0.26
μ^f_E μ^m_E	11.6	Fixed effort cost, males	Share of high educated males	0.29	0.27
$\mu_E^{\overline{1}}$	0.23	Variable cost of education	Slope of $e = \alpha + \beta q + u$	0.11	0.12

Model evaluation

Nontargeted moments	Data	Model	Source
Intergenerational persistence of education	0.16	0.15	PSID
Income elasticity of fertility, HS mother	-0.21	-0.17	PSID
Income elasticity of fertility, CG mother	-0.02	-0.01	PSID
Correlation time and goods investments	0.88	0.87	Daruich (2018)
Share of expenditures spent on children ($n = 1$)	0.26	0.22	Lino et al. (2015)
Share of expenditures spent on children ($n = 2$)	0.39	0.39	Lino et al. (2015)

Replicating Spanish transfer policy *	Data	Model	Source
Fertility increase (%)	6.32	7.50	González (2013)

(*) A universal transfer of 2.1 median female monthly income per birth. Spain 2007

Policy Evaluation

Policy Evaluation

- · Question: What are the effects of child-related tax benefits?
 - o Do they increase fertility?
 - If so, do they generate a fall in human capital?
 - o How is intergenerational mobility affected?
- · Policy implementation: eliminate child-dependent benefits

$$t^{*}(y, n) = t(y, 0) - \tau_{0}$$

where $\tau_0 = 0.05$ is such that the policy is revenue neutral

$$\int_{\mathcal{S}} t(y,n)y(\mathbf{s})dF(\mathbf{s}) = \int_{\mathcal{S}} [t(y,0)-\tau_0]y(\mathbf{s})dF^*(\mathbf{s})$$

Aggregate effects

	No Benefits	Tax Benefits (Baseline)	% Change
Completed fertility	1.81	2.11	16.3
Fertility of mothers	2.08	2.32	12.0
Share of mothers	0.87	0.91	3.82
Human capital at J_l	6.11	5.07	-17.1
College graduation rate	0.37	0.28	-25.0

	No Benefits	Tax Benefits (Baseline)	% Change
Completed fertility	1.81	2.11	16.3
Fertility of mothers	2.08	2.32	12.0
Share of mothers	0.87	0.91	3.82
Human capital at J_l	6.11	5.07	-17.1
College graduation rate	0.37	0.28	-25.0

- Tax benefits are effective at fostering fertility. Two channels
 - Benefits reduce the cost of children
 - $^{\circ}$ GE: \uparrow Fertility \rightarrow \uparrow Labor \rightarrow \downarrow Wages \rightarrow \uparrow Fertility

Why? parents cannot afford sufficiently high level of human capital $\,
ightarrow \,$ more kids

· Both intensive and extensive margin

	No Benefits	Tax Benefits (Baseline)	% Change
Completed fertility	1.81	2.11	16.3
Fertility of mothers	2.08	2.32	12.0
Share of mothers	0.87	0.91	3.82
Human capital at J_l	6.11	5.07	-17.1
College graduation rate	0.37	0.28	-25.0

- But they decrease children's human capital...
 - Families are now larger: lower productivity of parental investments
 - Lower income: money investments relatively more expensive
- · Reduction in college graduation rate: higher effort cost

Heterogeneous effects

	ŀ	High School			College Graduate			
	No	No Tax % Chg			Tax	% Chg		
Completed fertility	1.86	2.21	18.8	1.74	1.90	8.74		
Fertility of mothers	2.10	2.41	14.9	2.05	2.14	4.92		
Share of mothers	0.90	0.92	3.41	0.86	0.88	3.63		
Human capital at J_l	5.54	4.61	-19.1	6.59	6.12	-9.36		
College graduation	0.30	0.23	-29.1	0.41	0.39	-12.3		

Heterogeneous effects

	ŀ	High School			College Graduate			
	No	No Tax % Chg			No	Tax	% Chg	
Completed fertility	1.86	2.21	18.8		1.74	1.90	8.74	
Fertility of mothers	2.10	2.41	14.9		2.05	2.14	4.92	
Share of mothers	0.90	0.92	3.41		0.86	0.88	3.63	
Human capital at J_l	5.54	4.61	-19.1		6.59	6.12	-9.36	
College graduation	0.30	0.23	-29.1		0.41	0.39	-12.3	

- HS mothers are relatively more affected: 18.8% vs. 8.7%
 - Tax benefits are highly progressive
 - Wage of low educated fall relatively more (13% vs. 7%)

Heterogeneous effects

	ŀ	High School			College Graduate			
	No Tax % Chg			1	١o	Tax	% Chg	
Completed fertility	1.86	2.21	18.8	1	.74	1.90	8.74	
Fertility of mothers	2.10	2.41	14.9	2	.05	2.14	4.92	
Share of mothers	0.90	0.92	3.41	0	.86	0.88	3.63	
Human capital at J_l	5.54	4.61	-19.1	6	.59	6.12	-9.36	
College graduation	0.30	0.23	-29.1	0	.41	0.39	-12.3	

- · Consequently, human capital of children with HS mothers fall relatively more
 - Increase in differential human capital
 - Increase in differential college graduation rate
- Intergenerational persistence of education increases from 0.11 to 0.15

Policy Evaluation

• Two forces at play:

(a) Relative Price Effect:

Taxes distort relative price between number of children and their human capital.

(b) Income Effect:

Decreases in income induce parents to substitute children by children's human capital (quantity-quality trade-off)

- Disentangle relative importance:
 - Taking the economy without tax benefits as starting point...
 - 1. Add tax benefits without adjusting prices nor taxes \rightarrow effect (a)
 - 2. Let prices and taxes adjust \rightarrow effect (b)

Results decomposition

	No Ben.		Benefits		Prices		Tax Ben.
Completed fertility	1.81	+	0.62	_	0.32	=	2.11
Fertility mothers	2.08	$^+$	0.18	+	0.06	=	2.32
Share of mothers	0.87	$^+$	0.17	_	0.13	=	0.91
Differential fertility	-0.12	_	0.23	+	0.03	=	-0.32
Human capital at J_l	6.11	—	0.43	—	0.61	=	5.07
Differential human capital	1.05	+	0.30	+	0.16	=	1.51
College graduation rate	0.37	—	0.04	—	0.05	=	0.28

Results decomposition

	No Ben.		Benefits		Prices		Tax Ben.
Completed fertility	1.81	+	0.62	_	0.32	=	2.11
Fertility mothers	2.08	$^+$	0.18	+	0.06	=	2.32
Share of mothers	0.87	$^+$	0.17	_	0.13	=	0.91
Differential fertility	-0.12	_	0.23	+	0.03	=	-0.32
Human capital at J_l	6.11	_	0.43	_	0.61	=	5.07
Differential human capital	1.05	+	0.30	+	0.16	=	1.51
College graduation rate	0.37	_	0.04	_	0.05	=	0.28

- · GE and intergenerational effects ("Prices") are quantitatively important:
 - ° 25% of the effects on fertility of mothers
 - More than 50% of the effects on children's human capital
Results decomposition

	No Ben.		Benefits		Prices		Tax Ben.
Completed fertility	1.81	+	0.62	_	0.32	=	2.11
Fertility mothers	2.08	+	0.18	+	0.06	=	2.32
Share of mothers	0.87	+	0.17	_	0.13	=	0.91
Differential fertility	-0.12	_	0.23	+	0.03	=	-0.32
Human capital at J_l	6.11	_	0.43	-	0.61	=	5.07
Differential human capital	1.05	+	0.30	+	0.16	=	1.51
College graduation rate	0.37	—	0.04	—	0.05	=	0.28

- · GE and intergenerational effects ("Prices") are quantitatively important:
 - ° 25% of the effects on fertility of mothers
 - More than 50% of the effects on children's human capital
- · Most of the inequality effect due to design of benefits

• Problem:

Tax benefits foster fertility at the expense of children's human capital

• Question:

Is there a policy able to foster both fertility and children's human capital?

- Subsidies to education reduce the cost of children's human capital, which in turn, reduces the cost of children.
- Implementation:

$$\mathcal{I}(n,m,t) = A_{\mathcal{I}}\left[\varsigma\left(\frac{m(1+\tau)}{n^{\psi_1}}\right)^{\gamma} + (1-\varsigma)\left(\frac{t}{n^{\psi_2}}\right)^{\gamma}\right]^{\frac{1}{\gamma}}$$

where τ is such that the policy is revenue-neutral

	No Benefits	Tax Benefits	Subsidy
Completed fertility	1.82	2.11	2.01
Differential fertility	-0.12	-0.32	-0.10
Share of mothers	0.87	0.91	0.95
Human capital at independence	6.11	5.07	6.30
Differential human capital	1.05	1.51	1.06
College graduation	0.37	0.28	0.38
Interg. Persist. education	0.11	0.15	0.10

	No Benefits	Tax Benefits	Subsidy
Completed fertility	1.82	2.11	2.01
Differential fertility	-0.12	-0.32	-0.10
Share of mothers	0.87	0.91	0.95
Human capital at independence	6.11	5.07	6.30
Differential human capital	1.05	1.51	1.06
College graduation	0.37	0.28	0.38
Interg. Persist. education	0.11	0.15	0.10

- · Effective at increasing fertility: 62% of the increase with tax benefits
 - 12% increase among CG and 10% among HS
 - Education subsidies reduce the cost of children for CG relatively more.
- More effective than tax benefits at the extensive margin
 - ° Cost of education is an important barrier for parenthood

	No Benefits	Tax Benefits	Subsidy
Completed fertility	1.82	2.11	2.01
Differential fertility	-0.12	-0.32	-0.10
Share of mothers	0.87	0.91	0.95
Human capital at independence	6.11	5.07	6.30
Differential human capital	1.05	1.51	1.06
College graduation	0.37	0.28	0.38
Interg. Persist. education	0.11	0.15	0.10

- · As opposed to tax benefits, education subsidies do not reduce human capital
 - Reduce the cost of children by reducing the cost of human capital
 - Parents spend less money (reducing the cost), and the government more than compensates
- · No cost in terms of intergenerational mobility

Conclusions

Conclusions

- I propose a GE life cycle model with fertility choices and parental investments in children's human capital, estimated with US data
 - Rich degree of heterogeneity
 - Suitable for family-policy analysis
- · Evaluate quantitative impact of child-related tax benefits:
 - ° Significant effects on fertility and parental investments
 - Stronger for low income families: increases the gap in initial conditions
 - Both relative price distortion and GE effects are important
 - · Education subsidies increases fertility without damaging intergenerational mobility

Main take-aways:

- Evaluation of pronatalist policies should go beyond their effects on fertility
- ° Subsidies to the rich: short-run vs. long-run inequality

Thanks for your attention

Some references

- Caucutt, Guner and Knowles (2002). "Why Do Women Wait? Matching, Wage Inequality, and the Incentives for Fertility Delay", Review of Economic Dynamics, 5, 815?855
- Cunha, Heckman and Schennach (2010). "Estimating the Technology of Cognitive and Noncognitive Skill Formation". Econometrica, 78(3), 883–931.
- Daruich and Kozlowski (2016). "Explaining Income Inequality and Intergenerational Mobility: The Role of Fertility and Family Transfers". Mimeo.
- Daruich (2018). "The Macro Consequences of Early Childhood Development Policies". Mimeo.
- Del Boca, Flinn and Wiswall (2014). "Household Choices and Child Development", <u>The Review of</u> Economic Studies, 81(1), 137–185,
- González (2013). "The Effects of a Universal Child Benefit on Conceptions, Abortions and Early Maternal Labor Supply". American Economic Journal: Economic Policy 5(3), 160–188

Guvenen, Kuruscu, and Ozkan (2013). "Taxation of Human Capital and Wage Inequality: A Cross-country Analysis". The Review of Economic Studies 81(2), 818–850.

- Guner, Kaygusuz and Ventura (2014). "Income taxation of U.S. households: Facts and parametric estimates", Review of Economic Dynamics 17, 559?581
- Huggett, Ventura and Yaron (2011). "Sources of Lifetime Inequality". <u>American Economic Review</u> 101(7), 2923–2954.
- Kleven, Landais and Sazgaard (2018). "Children and Gender Inequality: Evidence from Denmark". forthcoming in American Economic Journal: Applied Economics.

Some references (cont.)

- Lee and Seshadri (2018). "On the Intergenerational Transmission of Economic Status", forthcoming in Journal of Political Economy.
- Maag (2013). "Child-Related Benefits in the Federal Income Tax". Brief 27, Urban Institute.
- Milligan (2005). "Subsidizing the Stork: New Evidence on Tax Incentives and Fertility". <u>The Review</u> of Economics and Statistics 87(3), 539–555.
- Neyer, Caporali, and Sánchez-Gassen (2017). "EU-Policies and Fertility: The Emergence of Fertility-Related Family Policies at the Supra-National Level". <u>Families & Societies</u> WP 79.
- Restuccia and Urrutia (2004). "Intergenerational Persistence of Earnings: The Role of Early and College Education". <u>American Economic Review</u> 94(5), 1354–1378.
- Sommer (2016). "Fertility Choice in a Life Cycle Model with Idiosyncratic Uninsurable Earnings Risk". Journal of Monetary Economics 83, 27–38.

Additional material

Low fertility rates

Figure: Total Fertility Rate (2016)

Source: OECD Family Database.

⊳ Back

Tax benefits are widely extended

Source: OECD Family Database.

Notes: Tax benefits measured as the relative difference in tax rates between a married household with 133% of the average income and 2 children and a family with the same level of income but no children. *Example*: in Italy, the tax benefits are of 10%, meaning that a family with 2 kids and 133% of the average Italian household income pays 10% lower taxes than a family with the same level of income and no children.

Tax Benefits in the US

HH Income	Tax	Tax rate by # of children			Benefits (2 kids)	
(\times avg. income)	0	1	2	3	\$, 2005	%
0.50	0.06	0.05	0.02	0.00	1,791	0.68
1.00	0.14	0.11	0.09	0.08	3,536	0.30
1.50	0.18	0.16	0.15	0.14	3,778	0.16

Table: Average tax rate, married couples

Source: CPS data, 2000-2010.

- Maag (2013): average benefits of \$3,400 per family w/ children
- · Where are benefits coming from:
 - ° Specific programs: Child Tax Credit, Child and Dependent Care Tax Credit
 - ° Others: Standard deduction, Personal Exemption, Earned Income Tax Credit

▷ Back

CDS Sample

- Start in 1997 collecting info on children aged 0 to 12 from PSID families, and follow them over time.
- I use the 2002 and 2007 waves (children aged 6 to 18).
- Time diary:
 - · Detailed info on child's activities: nature, duration, whether parents participate, etc.
- Test scores (Woodcock Johnson Tests)
 - ° Standard measure of child's cognitive skills.
 - Large number of yes-or-no questions.
- Includes individual identifiers for children and parents: link with PSID data.
- Information on 4,530 children: 1,892 also in PSID when adult.

Time Investments

⊳ Back

Children's Human Capital

Table: Children's (normalized) scores in the Woodcock Johnson Tests

	Obs.	Mean	Std	Min	Max
Applied Problem Solving	4,125	0.608	0.144	0.050	1.000
Passage Comprehension	4,047	0.590	0.159	0.023	1.000
Letter-Word	4,125	0.741	0.170	0.086	0.983

Table: Summary statistics, children's human capital measures

	Obs	Mean	Std	Corr(q,e)
Applied Problem Solving	4,122	2.091	2.358	0.449
Passage Comprehension	4,037	1.875	1.678	0.300
Letter-Word	4,109	6.303	8.274	0.336
All test	4,024	2.590	1.981	0.482

Human capital by age

▷ Back - Model

▷ Back - Calibration

Income taxes in the US

Gross income

- Adjustments to gross income
- = Adjusted gross income
- Standard deduction
- Personal exemptions, or Itemized deductions
- = Taxable Income
- Taxes
- = Tax imposed
- Nonrefundable credits
- Refundable credits.
- = Tax liability after credits

Income taxes in the US

Sources of child-depdendencies

- Standard deduction: singles w/ children can claim "head of household" filling status, who enjoy higher standard deduction.
- Personal exemptions: extra amount per dependent child (phase out)
- Itemized deductions: interests paid on education loans, and higher education expenses (both limited and for higher education).
- Children and dependent care tax credit (CDCTC): non-refundable credit for the care of dependents (phase out)
- Child tax credit (CTC): refundable credit of \$1,000 per eligible child (phase out)
- Earned income tax credit (EITC): higher credit rate, maximum credit and phase out threshold.
- Tax rates: heads of households enjoy lower tax rates.

Maag (2013)

Average Benefit of Child-Related Tax Benefits for Families with Children at Various Income Levels

CPS Sample

- Annual Survey of Economic Conditions Supplement to the CPS.
 - Years 2000 to 2010.
 - Large sample size:

Allows for clustering by the number of children in the household.

- · Tax-related variables from the Census Bureau's tax model
 - $^\circ~$ Using info from: IRS, the American Housing Survey, and the State Tax Handbook.
- Sample selection:

Keep married households filling joint returns and positive income.

Tax function

▷ Back

Tax function

Income profiles

- Construct hourly wages for full-time workers.
- Fit 2nd order polynomial in age, by education and gender.
- Normalize $\mu(m, \overline{e}, J_l) = \mu(m, \underline{e}, J_l) = 0.$

Income profiles

• Take residuals as our measure of labor productivity. Estimate (by education):

 $z_{i,t} = \alpha + \rho z_{i,t-2} + \epsilon_{i,t}$

• Measurement error: instrument $z_{i,t-2}$ with $z_{i,t-4}$ (biannual observations)

Table: Labor productivity process estimation

	Low educated	High educated
Autocorrelation, ρ_e	0.824	0.902
Std of innovations, σ_e	0.406	0.392

Fertility risk

• Follow Sommer (JME 2016): use data from medical literature on infertility.

$$p_0(b,j) = \begin{cases} 1 - \exp(\alpha_0 + \alpha_1 j) & \text{if } b = 1 \text{ and } j \le J_F \\ 0 & \text{otherwise} \end{cases}$$

Children independence

• Probability that a child becomes adult given by:

$$p_{l}(n,j) = \frac{\sum_{i=1}^{N} \mathbf{1}\{n_{i,t} < n \land n_{i,t-3} = n \land age = j\}}{\sum_{i=1}^{N} \mathbf{1}\{n_{i,t-3} = n \land age = j\}}$$

• Results (PSID data):

		Mother's age			
Age	20-28	29-37	38-46	>46	
Model age (<i>j</i>)	1-3	4-6	7-9	>9	
	0.029	0.037	0.288	0.501	
	0.025	0.041	0.309	0.579	
	0.049	0.105	0.399	0.718	
	0.125	0.140	0.455	0.720	

Table: Children ageing process

Children independence

Expected number of periods with kids 4 children 3 children 2 children 1 child Household Age

Figure: Expected number of years with children, by age and number of children

Dynamic program

$$V(e_m, e_f, z_m, z_f, a, n, q, n_0, n_l, j) = = \max_{\mathbf{x}} U_m(c, l_m + \alpha_m t) + U_f(c, l_f + \alpha_f t) + U_k(n', q', b) + + \beta E_j [V(e_m, e_f, z'_m, z'_f, a', n', q', n'_0, n'_l, j + 1)]$$

with $n' = n - n_l + n_0$ and $\mathbf{x} = (c, a', l_m, l_f, k, m, t, b)$, and subject to

• Budget contraint: $a' + \Psi(n')c + m + b = y + (1 + r)a - T(y, n') - \tau_{ss}y$

with labor income given by $y = \omega_m(e_m, z_m, j)I_m + \omega_f(e_f, z_f - \delta_0 n_0, j)I_f$

- Time constraint: $I_g + \alpha_g t \in [0, 1]$
- Other constraints: k = 0 if $j > J_F$, m = t = 0 if n' = 0 and b = 0 if $n_l = 0$

▷ Back

Aggregate production function

· Standard function:

$$Y = AK^{\alpha}L^{1-\alpha}$$
, with $L = \left[aL_0^b + (1-a)L_1^b\right]^{\frac{1}{b}}$

where K is capital, L_0 is low-educated labor and L_1 is high-educated labor

- Set $\alpha = 0.33$ and choose parameters (*A*, *a*, *b*) such that:
 - Interest rate of 3% (annual)
 - Wage of low educated of 10 (normalization)
 - Relative wage of 1.28 (PSID)
- *A* = 47.9, *a* = 0.44, *b* = 0.65

▷ Back

Computation

- · High dimensional problem: more than 120,000 grid points in the state space
- · Choice set depends on the state
 - Young households choose whether to have a kid
 - Parents decide on investments
 - ° etc.
- Up to 6 continuous choice variables (+1 discrete)
- Value function is not differentiable: solution requires global methods
- Solution:
 - Parallel computing (OpenMP)
 - Solve household problem using Nelder–Mead method