Intergenerational Persistence in Welfare Program Participation

Javier López Segovia¹ Borja Petit²

¹Joint Research Center ²CUNEF Universidad

Spanish Macroeconomic Network

October 2024

The views expressed in this paper are the sole responsability of the authors and should not be attributed to the European Comission

- Low take-up in welfare programs in the US: between 30% and 83% (Ribar, 2014).
 - ightarrow Why? Lack of information, transaction costs, social stigma, \ldots
- Strong intergenerational correlation on welfare participation (Black and Devereux, 2011). PSID (2000-2010): Children of participanting parents are 3 times more likely to participate.
 - A. Persistence in income, education, skills.
 - B. Persistence in welfare culture

Persistence in the underlying factors (information, stigma, ...) behind incomplete take-up

• Available empirical evidence suggests that (B) plays an important role.

Dahl, Kostol and Mogstad (2014), Hartley, et al (2017), Dahl and Gielen (2018)

• Research question: How do (B) and (A) interact?

Introduction

• Persistence in income is important, but cannot explain everything.

• Persistence in income is important, but cannot explain everything.

Dep. var: Participation $_t = \{0, 1\}$	(1)	(2)	(3)	(4)
Participating parents (ever)	0.205***	0.112***	0.072***	0.067***
	(0.003)	(0.003)	(0.005)	(0.005)
(Log) Income		-0.098***	-0.077***	-0.077***
		(0.002)	(0.003)	(0.003)
HH characterstics				\checkmark
Wealth			\checkmark	\checkmark
Observations	40,762	33,681	13,470	13,470
R-squared	0.094	0.181	0.155	0.183
Mean dep. variable	0.139	0.104	0.073	0.073

• For a given level of income, participating parents invest less time and money on their children's human capital...lowering child's test scores.

	Investr	nents	
	Money	Time	Test scores
(Log) Income	0.765***	0.0622	0.0463***
	(0.0744)	(0.225)	(0.00791)
Participating parents	-0.975***	<mark>-1.663***</mark>	-0.160***
	(0.159)	(0.473)	(0.0170)
Observations	5,889	4,485	4,142
R-squared	0.109	0.197	0.618
Mean dep. variable	2.093	19.367	-0.571

Notes: all regressions include FE for years, child's age, number of children, and marital status.

• As a result, children of participating parents have lower level of skills.

This paper

- Research questions:
 - (A) How does welfare culture affect persistence in welfare participation?
 - \rightarrow Welfare culture explains around 40% of the differential participation rate.
 - (B) How does welfare culture affect persistence in skills?
 - ightarrow Welfare culture accounts for around 10% of the persistence in skills.
- Use an OG model with heterogeneus agentes and:
 - Endogenous persistence in income (child's skill formation).
 - Persistence in preferences for welfare participation (welfare culture)
 - Paternalistic preferences: value children's choices according to their own preferences.

Main features

- Life-cycle OG model with heterogeneous agents and uninsurable income risk:
 - Wage heterogeneity: age profile + skills + persistent shock.
 - Endogenous skill formation during childhood (Lee and Seshadri, JPE, 2019)
- Welfare programs: heterogeneous utility cost from participation (ν) \rightarrow incomplete take-up. Fact 1. Incomplete take-up of welfare programs.
- Welfare culture: utility cost from participation is correlated across generations.

Fact 2. For a given income, children of particiapting parents are more likely to participate.

• Paternalistic preferences: parents' value their children utility with their own preferentes.

Fact 3. For a given income, non-particiapting parents invest more in their children's skills.

More

More

More

Welfare participation

- Households suffer utility cost in case of welfare participation, $\nu \in \{\nu_L, \nu_H\}$, with $\nu_L > \nu_H$.
 - Value of ν_H such that participating is never optimal
 - All welfare program participants have a low participation cost, ν_L .
- Welafare culture: Pariticpation cost drawn when moving out depending on parents' cost (ν_p):

$$P(\nu = \nu_L | \nu_p = \nu_L) = p_{L|L} > p_{L|H} = P(\nu = \nu_L | \nu_p = \nu_H)$$

- · Children of low-cost parents are more likely to draw a low participation cost.
- For given level of income, children of participating parents are more like to participate.

Value function

• Households withoutwith kids solve:

$$\begin{split} V_{j}(z,\tilde{\theta},\tilde{\theta};\theta,\nu) &= \max_{c,\ell,\mathbb{P},m,t,m,t} u(c,\ell) - \mathbb{P}\nu - \phi t - \phi t + \beta \mathbb{E}_{j} \left[V_{j+1}(z',\tilde{\theta}',\tilde{\theta}';\theta,\nu) \right] \\ \text{s.t.} \quad c+m+m = y - T(y,n=01) + \mathbb{P} \cdot TR(y,n=01) \\ y &= (1-\tau_{ss})w(j,\theta,z)\ell \\ \tilde{\theta}' &= f_{j}(\tilde{\theta},m,t) \ \tilde{\theta}' = f_{j}(\tilde{\theta},m,t) \end{split}$$

• When children move out (age J_l , 43), parents' continuation value is:

$$\mathbb{E}_{J_{l}}\left[V_{J_{l+1}}(z',\tilde{\theta}';\theta,\nu)\right] = \mathbb{E}_{J_{l}}\left[V_{J_{l+1}}(z';\theta,\nu)\right] + \underbrace{W(\tilde{\theta}',\nu_{p}=\nu)}_{\text{Altruism}}$$

Paternalistic preferences

• The utility parents derive from the children is $W(\tilde{\theta}, \nu_{\rho})$ which is given by:

$$W(\tilde{\theta},\nu_{p}) = P(\nu_{L}|\nu_{p}) \cdot \underbrace{E_{z}\left[\widetilde{V}(z,\xi\,\tilde{\theta},\nu_{L}|\nu_{p})\right]}_{\text{Low participation cost}} + P(\nu_{H}|\nu_{p}) \cdot \underbrace{E_{z}\left[\widetilde{V}(z,\xi\,\tilde{\theta},\nu_{H}|\nu_{p})\right]}_{\text{High participation cost}}$$

• Paternalistic preferences: children's choices evaluated according to parents' preferences.

$$\widetilde{V}(z,\theta,\nu|\nu_p) = V_1(z,\theta,\nu_p)$$
 with $x = x(z,\theta,\nu), x \in \{\mathbb{P},\ell,m,t\}$

- High- ν parents suffer a welfare loss if their low- ν child participates.
- Low- ν parents suffer a welfare loss if their high- ν child refuses to participare.

More

Calibration

- We calibrate the model to the US in the 2000's for households aged 20-80.
- Exagenous parameters: $\sigma = 1$ (log utility), $\gamma = 0.5$ (Frish elasticity), $\beta = 0.97$.
- Data sources:
 - PSID: age, labor, income, welfare participation.
 - PSID's CDS: parental investments investments.
 - Estimate tax function using CPS, 2000-2010.
 - Estimate transfers function using SIPP, 2001-2012.

Calibration (preliminary)

Calibrated parameters

Parar	neter	Value	Moment	Model	Data
φ	Level disutility work	41.1	Average hours	31.7	31.7
$p_{L L}$	${\it P}(u= u_{\it L} u_{\it P}= u_{\it L})$	0.34	Participation rate	9.5	12.6
p _{L H}	${\it P}(u= u_{\it L} u_{\it P}= u_{\it H})$	0.20	Differential participation rate	0.18	0.20
$ u_L$	Low part. cost	0.05	Participation elasticity, income	-0.09	-0.10
$ u_H $	High parti. rate	3.85	DIff. income P vs NP parents	-0.33	-0.44
μ_{0}	Share invest. in $ ilde{ heta}'$, scale	0.39	IGC of skills	0.39	0.37
μ_j	Share invest. in $ ilde{ heta}'$, shape	0.32	Age elasticity of skills	0.05	0.15
γ_0	Share time in Λ_j , scale	0.97	Ave. money invest.	4.70	3.96
γ_j	Share time in Λ_j , shape	0.01	Ave. time investment, mid-age child	18.1	21.0
ϕ	Disutility time invest	3.01	Ave. time investment	24.1	20.1
ξ	Anchor of skills	-2.80	Ave. skills	1.00	1.00
σ_k	Std of shocks to child's skills	0.07	Std of skills	0.40	0.68

Results

How does welfare culture affects...

- 1. ... intergenerational persistence in welfare participation?
- 2. ... intergenerational persistence in skills?

To answer this questions we compare the bechmark economy with one in which:

- Set $p_{L|L} = p_{L|H} = \bar{p}$ such that total amount of transfers does not change: $\bar{p} = 0.23$.
- Probability of having a low- ν child is independent of parents' participation cost, so...
 - Any remaining persistence in welfare participation only due to persistence in income.
 - Differences in investment only due to differences in parental income & skills.

Results

1. How does welfare culture affects intergenerational persistence in welfare participation?

	Benchmark	Counterfactual	Diff.
Participation rate, P parent	24.7 pp	19.4 pp	-5 pp
Difference, P vs NP	18.0 pp	11.8 pp	$-7 \mathrm{pp}$
Difference if $y < 0.5$	16 pp	7 рр	-9 pp

- Lower participation differential: children of participating parents are now 11 pp more likely to participate, 7 pp lower differential. Larger reduction among lower income households.
- Welfare culture explains around 40% of the persistence in participation.

Results

2. How does welfare culture affects intergenerational persistence in skills?

	Benchmark	Counterfactual	Diff.
IGC skills	0.39	0.35	-0.04
Time investment, NP parent	25	26	1 h/week
Money investment, NP parent	5.1	5.3	0.2% <i>ӯ</i>
$\mathbb{E}(heta u= u_{ extsf{H}})-\mathbb{E}(heta u= u_{ extsf{L}})$	7.1%	0%	-7.1 pp
$\mathbb{E}(y u = u_H) - \mathbb{E}(y u = u_L)$	7.5%	1.2%	-6.3 pp

 Lower persistence in skills: High-ν parents face even more incentives to invest (due to higher probability of children's participation): 4% more time and money investments.

... but high- ν parents are no longer richer; in the baseline economy, 7% higher level of skills.

• Welfare culture accounts for around 10% of the persistence in skills.

Conclusions

We build a quantitative macroeconomic model featuring both income persistence and welfare culture (persistence in preferences towards welfare programs) and find:

• Welfare culture explains around 40% of the differential participation rate.

Takeaway 1. Transfers not granted "only" based on income, with potentially large welfare consecuences of welfare culture: misallocation of welfare income?

• Welfare culture accounts for around 10% of the persistence in skills.

Takeaway 2. Moral hazard problems associated to welfare programs have an intergenerational dimension: persistence in factors behind incomplete take-up may distort parental incentives to invest in children's human capital.

→ Parents with high-participation cost have extra incentives to invest in their kids' human capital to prevent them from participating in welfare programs: higher IGC of skills.

Thanks for your attention

Measurement

- Sample selection: households aged 20 to 80, both married and singles.
- Household income (PSID): both labor income and labor supply are measured as averages across spouses.
- Welfare participation (PSID): $\mathbb{P}_t = 1$ if any of the spouses receives either TANF or Food Stamps during period *t*.
- Parental investmentes (PSID-CDS):
 - Time: total weekly hours that either the father, the mother or both have been actively involve in child's activity (time diary data).
 - Money: sum of the following expenses: private schools fees, tutoring programs, other lessons, sports-related activities, community groups or programs.

Back

Income process

• Wage rate of a household with age *j* and state (z, θ) given by:

$$\log(w) = \omega_j + \theta + z$$
, with $z' = \rho z + \epsilon$

• Using wages *w_{i,j}* from PSID, estimate the following regression:

$$\log(w_{i,j}) = \underbrace{a_0 + a_1 j + a_2 j^2}_{\omega_j} + \alpha_i + \alpha_t + z_{ij}, \quad \text{with} \quad \underbrace{\theta_i = \exp(\alpha_i)}_{\text{Skills}}$$

where *i* stands for the hoisehold, *j* for the houshold age, and *t* for the year. Then, fit an AR(1) process to *z* using $z_{i,i-1}$ to instrument for $z_{i,i}$ (measurement error).

$$z_{i,j} = \rho z_{i,j-1} + \epsilon$$
, with $(\rho_z, \sigma_z) = (0.953, 0.249)$

Children's skill formation

• Skills formation technology as in Lee and Seshadri (JPE, 2019).

$$\log \tilde{\theta}_{j+1} = \mu_j \log \Lambda_j(t, m) + (1 - \mu_j) \log \tilde{\theta}_j + \epsilon_k, \quad \epsilon_k \sim N(0, \sigma_k^2),$$
Investments
Past skills

• Parents invest money (*m*) and time (*t*) in their children's skills:

$$\log \Lambda_j(t,m) = \gamma_j \log \left(t + \frac{\gamma_j x_j}{\bar{w}}\right) + (1 - \gamma_j) \log \left(m + (1 - \gamma_j) x_j\right)$$

where x_i is the amount of public investment in children at age *j*.

• Technology is age-dependent:

$$\mu_j = \mu_0 \exp(-\mu_1 j), \quad \gamma_j = \gamma_0 \exp(-\gamma_1 j)$$

Tax function

	λ	au
No children	0.865	0.070
2 children	0.924	0.112

• We consider a standard tax function:

$$T(y,n) = (1 - t(y,n))y \longrightarrow t(y,n) = 1 - \lambda(n)y^{\tau(n)}$$

• Estimate the parameters by presence of children using CPS 2000-2010 data

Transfers function

	γ	α	eta_{0}	β_1
No children	0.026	-3.313	-0.380	0.053
2 children	0.065	-2.921	-0.351	-0.034

• Transfers function:

$$TR(y, n) = \begin{cases} \gamma(n) & \text{if } y = 0\\ \exp(\alpha(n) + \beta_0(n)y + \beta_1(n)\log y) & \text{if } y > 0 \end{cases}$$

• Estimate by presence of children using SIPP data, 2001-2012

Use data on Temporary Assistance for Needy Families and Food Stamps

Life-cycle structure

- Households ork until age J_R and can participate in welfare at any time.
- Every household has a kid at age J_F and invest in her skill until age J_I .
- Retirees receive pension income and cannot participate in welfare (simplification).

Back

Paternalistic preferences

High-ν parents, suffer a large utility loss if children are low-ν and low-θ.
 If the child has low-ν and low skills, large welfare costs from children's participation.

Paternalistic preferences

Low-ν parents, instead, suffer a (small) utility loss if children are high-ν and low-θ.
 They don't suffer distuility from their children's participation but they do from lack of insurance.

Calibration

Non-targeted moments

Calibration